
1597 

acetylene, without concomitant side reactions associated 
with the Nb-H group, requires that M-H insertion to give 
an alkenyl complex be effected prior to treatment of the or-
ganometallic species with alkylating agent. Isoelectronic 
hydrido(ethylene) complexes Cp2MH(C2H^+ (M = Mo, 
W) undergo insertion to yield the ethyl complex on heating 
with triphenylphosphine;8 however, prolonged treatment of 
2 with excess PMe2Ph at 110° caused no hydride insertion, 
and only very slow replacement of the acetylene by the 
phosphine was observed. In contrast, heating 2 under CO 
(50 psi, 75°, 15 min) caused smooth conversion to alkenyl-
(carbonyl) complexes 3 (Table I) which were characterized 
by ir (for 3a, vCo 1900 cm"1) and 1H NMR (Table I). Ap­
parently, the relative stability of noninserted (7r-acetylene 
hydride) and inserted (alkenyl) forms of the Nb complexes 
is largely determined by the availability of electron density 
on Nb for back-bonding which is required to stabilize the 
(Tr-acetylene)-metal bond. Thus an electron donor ligand 
(PMe2Ph) does not favor insertion whereas ligands which 
are electron acceptors (CO, H+) do. For complexes of un-
symmetrically substituted acetylenes, high regiospecificity 
for insertion is observed in which the niobium atom attaches 
preferentially to the vinylic carbon atom bearing the steri-
cally smaller substituent. This insertion occurs with (C=C) 
cis stereochemistry. 

As expected, complexes 3 react rapidly with acid to give 
the corresponding cis olefins. Reaction of 3c with D2SO4 
gives CH3C(D)=C(H)CH(CH3);!, reinforcing the conten­
tion that protonation occurs at Nb followed by reductive 
elimination of olefin. Reaction of the vinylic complexes with 
CH3OSO2F is considerably slower than protonation (sever­
al hours at room temperature),9 but methylated olefins are 
eventually formed. Surprisingly, however, treatment of 3c 
with CH3OSO2F yielded none of the expected trisubsti-
tuted olefin (CH3)2C=CHCH(CH3)2; instead, cis- and 
rrw«-CH3C(H)=C(CH3)CH(CH3)2 were formed (in 75% 
yield based on Nb; see reaction 2). Thus alkylation proceeds 
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CH3 R 

Y «#• 

Cp2Nb,. 

H ^ 

Cp2Nb ̂ , R 

I + CH3OSO2F —* 

R H R H R 

— I + T (2) 
X R' CH3""^R' R'<//^CH3 CH 

regiospecifically by attack of the electrophilic reagent on 
that vinylic carbon atom to which the Nb atom is not at­
tached. We suggest that this unusual reaction results from 
an inability of the methyl group to attack at the metal cen­
ter for steric reasons; instead, alkylation occurs "allylically" 
at the /J-vinylic carbon.10 The resulting intermediate, which 
may be represented as a cationic (alkylcarbene)Nb(III) 
complex,11 undergoes proton migration followed by reduc­
tive elimination of the olefinic product (reaction 2). 

Parallels between protonation and alkylation of low-va-
lent transition metal complexes have previously been em­
phasized.73 As demonstrated by the contrasting results de­
scribed herein, it must now be recognized that these two 
types of reactions may indeed proceed by dissimilar path­
ways in complexes which possess several potential sites of 
electrophilic attack, especially in cases where steric crowd­
ing exists at one such site. 
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Sesterterpenes. I. Stereospecific Total 
Synthesis of Moenocinol 

Sir: 

The C25 acyclic lipid moenocinol has been obtained from 
the antibiotics moenomycin1 and prasinomycin2 by hydroly­
sis and shown to possess structure I.2-3 This communication 
describes the first stereospecific synthesis of moenocinol 
employing nerol and geraniol as trisubstituted olefin pre­
cursors. 

The key intermediate ester 10 was synthesized from pure 
nerol.4 Ozonolysis5 of nerol benzyl ether (2) (prepared from 
nerol (sodium hydride followed by benzyl bromide in 
glyme, 95%)) at —78° in methylene chloride-pyridine af­
forded after reduction with zinc in acetic acid, aldehyde 3 in 
55% yield6-7 (ir(neat)5.80 n; NMR 9.65 (t, J = 1.5 Hz, 1 
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H)). This aldehyde was allowed to react in anhydrous ether 
at room temperature for 1 hr with l-lithio-2-methyl-l-pro-
pene8(addition at 0°). The allylic alcohol 4 was obtained in 
80% yield. The NMR spectrum of 4 exhibited three sin­
glets, each due to olefinic methyl groups at 2.58, 2.62, and 
2.66 and peaks due to olefinic protons between 4.95 and 
5.42 (m, 2 H). The allylic alcohol 4 was converted into vinyl 
ether 5 (75% yield (98% based on recovered starting materi­
al)) by equilibration9 with ethyl vinyl ether followed by 
careful chromatography. When the vinyl ether was heated 
to reflux in xylene (3 hr) under an atmosphere of nitrogen, 
aldehyde 6 was generated in 99% yield and exhibited only 
one peak on GLC and TLC analysis. The NMR spectrum 
of 6 showed a singlet at 1.02 (6 H), a broad singlet at 2.66 
(3 H, olefinic methyl), absorption due to olefinic protons 
centered at 5.36 (m, 3 H), and a triplet at 9.60 (J = 2 Hz, 
-CHO); the infrared spectrum exhibited peaks at 5.80 
( C = O ) and 10.30 (trans C = C ) /i. 

Elaboration of the moenocinol molecule to key intermedi­
ate 10 was completed by the following sequence: (1) Hor-
ner-Emmons reaction of aldehyde 6 with the sodio deriva­
tive of triethyl phosphonoacetate in glyme at 65° for 1.5 hr 
to form 7 (90% yield); (2) hydrolysis of the newly intro­
duced ester (10% ethanolic potassium hydroxide) to the 
a,^-unsaturated carboxylic acid 8 (99% yield); (3) reduc­
tion (lithium-ethylamine, —78°, 1 hr) of the a,^-unsatu­
rated acid to the saturated acid 9 (50% yield) with cleavage 
of the benzyl ether; and (4) esterification of 9 with ethereal 
diazomethane in near quantitative yield. The NMR spec­
trum of 10 exhibited two sharp singlets at 0.96 (6 H, C-8 
methyls) and 3.58 (3 H, OMe), one broad singlet at 1.68 (3 
H, olefinic methyl group), a two-proton doublet at 3.95 (J 
= 7.5 Hz, -CH2OH), and olefinic protons centered at 5.22 
(m, 3 H). The infrared spectrum of 10 showed carbonyl ab­
sorption at 5.82 /it. 

Treatment of 10 with dihydropyran in methylene chlo­
ride at 0° containing tosyl acid for 1.5 hr afforded the pure 
tetrahydropyranyl ether 11. Generation of the ester enolate 
of 11 (lithium diisopropylamide-THF, - 7 8 ° ) followed by 
addition of geranyl bromide produced a 61% yield of 12 
which represents the gross skeleton of moenocinol. Conver­
sion of the carbomethoxy function of 12 into the terminal 
disubstituted olefin was accomplished in the following man­
ner: (1) reduction (lithium aluminum hydride) of ester 12 
to the hydroxymethyl derivative 13 in 93% yield; (2) mesy-
lation of 13 in pyridine at room temperature (1 hr) to afford 
mesylate 14 (94% crude yield); (3) displacement of the 
mesylate with o-nitrophenylselenium anion (generated 
from di-o-nitrophenyldiselenide10 and sodium borohydride 
in absolute ethanol) to the selenide 15 (75% yield); and (4) 
elimination of the o-nitrophenylselenoxide" derived from 
15 (2 equiv of 50% hydrogen peroxide in THF (3.5 hr)) 
with formation of the olefin 16 in 75% yield.12 The key fea­
tures of the NMR spectrum of 16 are a six proton singlet at 
0.96 (C-8 methyls), a two proton doublet at 2.68 (J = 7.5 
Hz, diallylic methylenes), and a broad singlet at 4.64 (ter­
minal vinyl). Cleavage [methanol/TsOH/0° (1 hr) — rt(2 
hr)] of the tetrahydropyranyl ether afforded pure moenoci­
nol (1). 

The NMR and infrared spectra of synthetic 1 were in 
complete agreement with reference spectra of natural moe­
nocinol kindly provided by Dr. W. A. Slusarchyk. The 
NMR spectrum of synthetic 1 displayed a sharp singlet at 
0.96 (C-8 methyls, 6 H), three singlets at 1.61 (6 H), 1.68 
(3 H), and 1.73 (3 H) due to olefinic methyl groups, multi-
plets centered at ca. 2.1 (allylic methylene protons, 12 H) 
and 1.3 (methylene protons, 2 H), a two-proton broad dou­
blet at 2.67 (J = 7 Hz, diallylic methylenes), a two-proton 
doublet at 4.02 (2 H, J = 7.5 Hz, -CH 2 OH) , a broad sin-

OCH2C6H, 
„ OC H9 CRHK 
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OCHoC6H-, OCHX6H, 

OHC 

OCH2C6H, 

ROOC 
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15, X=CH2Se. 
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glet due to terminal vinyl protons at 4.67 (2 H), and five 
olefinic protons in a complex series of peaks in the region 
4.85-5.60. 
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Chlorination of Alkenes and Alkynes with 
Molybdenum(V) Chloride1 

Sir: 

The reaction of molybdenum(V) chloride with tetrachlo-
roethylene produces hexachloroethane in essentially quanti­
tative yields.2 The extension of this reaction to other olefins 
would, if available, constitute a potentially useful procedure 
for the chlorination of carbon-carbon double bonds. We 
wish to report that molybdenum(V) chloride reacts with 
vicinal disubstituted olefins and internal alkynes to produce, 
inter alia, dichloroalkanes and -alkenes, respectively, in fair 
to good yields. 

MoCl5 

RCH=CHR' • RCH-CHR' 
C H 2 C l 2 , - 7 8 ° I I 

Cl Cl 

MoCl5 R . R ' 

RC=CR' ^ C = C 
C H 2 C l 2 , - 7 8 ° QX ^ C 1 

In a typical experiment, a solution of cyclohexene (2.04 
g, 25.0 mmol) in methylene chloride (7 ml) was added over 
a 15-min period to a vigorously stirred solution of molyb-
denum(V) chloride3 (3.40 g, 12.0 mmol) in methylene chlo­
ride (5 ml) at —78° with the rigorous exclusions of moisture 
and oxygen. The resulting mixture was allowed to warm 
gradually to ambient temperature. After chromatography 
over alumina, analysis indicated the presence of m-l,2-di-
chlorocyclohexane (68%), fra/M-l,2-dichlorocyclohexane 
(2%), cyclohexylcyclohexane (2%), and chlorocyclohexane 
(14%). Results obtained on treatment of other representa­
tive substrates are given in Table I. 

This reaction sequence seems applicable to the chlorina­
tion of vicinal disubstituted olefins and internal acetylenes; 
in our hands, terminal, tri-, and tetrasubstituted olefins and 
terminal acetylenes produced poor yields of dichloro prod­
ucts. The use of methylene chloride or chloroform as sol­
vents results in appreciably higher yields of dichloro prod­
ucts than does pentane. The principal products produced by 
the reaction of cyclohexene (excess) with molybdenum(V) 
chloride under similar conditions but in the absence of sol-
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Table I. Reaction of MoCl5 with Various Olefins and Acetylenes'* 

Olefin 

Cyclopentene 

Cyclohexene 

Bicyclo [2.2.1 ] heptene 

2-Hexene 
1-Hexene 
c;'s-3-Hexene 

trans-3-Hexene 

1-Methylcyclohexene 

Tetramethylethylene 

4-Octynec 

2-Pentyne^ 

Dichloride 

cw-l,2-Dichloro-
cyclopentane 

tazrtS-l,2-Dichloro-
cyclopentane 

m-l,2-Dichloro-
cyclohexane 

trans-l ,2-Dichloro-
cyclohexane 

«co,cw-2,3-Dichloro-
bicyclo[2.2.1] heptane 

2,3-Dichlorohexane 
1,2-Dichlorohexane 
meso-3,4-Dichlorohexane 
d,/-3,4-Dichlorohexane 
d,/-3,4-Dichlorohexane 
meso-3,4-Dichlorohexane 
l-Methyl-l,2-dichloro-

cyclohexane 
2,3-Dichloro-2,3-

dimethylbutane 
c/s-4,5-Dichlorooct-4-ene 
frcws-4,5-Dichlorooct-4-ene 
m-2,3-Dichloropent-2-ene 
fra«s-2,3-Dichloropent-2-ene 

Yield,* 
% 
66 

<1 

68 

<2 

27 

67 
10 
67 
<1 
63 
<1 

4 

9 

36 
<1 
38 
<1 

o Unless otherwise indicated all additions were carried out in 
CH2Cl2 solution at -78° under an inert atmosphere of dry nitrogen. 
The concentration of molybdenum(V) chloride was ~1.0 M. 
b Yields were determined by quantitative vapor phase chromoto-
graphy and are based on molybdenum(V) chloride. c Carried out at 
room temperature. 

vent are chlorocyclohexane (3%) and as-1,2-dichlorocyclo-
hexane (8%). 

Although our understanding of the detailed course of this 
reaction is still incomplete, several observations permit a 
description of its general features. First, the products of 
these reactions provide convincing evidence that the result­
ing vicinal dichlorides do not arise via the ionic or free-radi­
cal pathway characteristically observed in the reaction of 
olefins with molecular chlorine. Specifically, the chlorina­
tion of cyclopentene and cyclohexene is essentially unac­
companied by the formation of the corresponding trans-
l,2:dichlorocycloalkanes.4 In addition, the treatment of 
norbornene yields c/s.exo-2,3-dichloronorbornane with no 
evidence (<1%) of any j>>/!-7-exo-2-dichloronorbornane, 
the principal dichloride obtained from the ionic chlorination 
of norbornene by molecular chlorine.5 Similarly, the chlo­
rination of cis- and trans-3-hexene proceeds stereospecifi-
cally to yield respectively meso- and ^,/-3,4-dichlorohex-
ane, again in contrast to the products produced by ionic or 
free-radical chlorination of these substrates.46-7 

Second, other transition metal chlorides show similar 
reactivities as chlorinating agents. For example, the tung­
sten hexachloride produced moderate yields of cw-l,2-di-
chlorocyclohexane (41%) and no (<1%) f/-a«s-1,2-dichloro-
cyclohexane when treated with cyclohexene under condi­
tions similar to those detailed above.8'9 Such a result 
suggests a general reaction pathway may be common to 
these systems. 

Finally, a similar albeit less stereoselective reaction is ob­
served with certain transition metal bromides. Thus, for ex­
ample, the addition of cyclohexene to a methylene chloride 
solution of what is purported to be tungsten(VI) bromide,10 

under conditions equivalent to those cited above, yields a 
mixture of cw-l,2-dibromocyclohexane (40-45%) and 
trans-1,2-dibromocyclohexane (5-10%). 

Further observations relating to the mechanism of these 
reactions will be presented in later papers. 
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